Evaluating your Technology Platform

Choosing the right single-use bioreactor platform

When selecting a bioreactor, you can choose stainless steel or single-use technologies, depending on your biomanufacturing requirements. The bioreactor is a key component of your bioprocessing workflow and should be regarded as a strategic asset. It is important that this core technology is carefully chosen, specified, designed, and supported, both now and in the future.

Stainless steel bioreactors, at capacities of 10,000 to 20,000 liters or greater, are still the preferred option when producing large-scale products.  But single-use bioreactors, typically 1000 or 2000 liters, are quickly becoming the preferred option for small-scale production.

When producing biologics, single-use can provide benefits such as lower capital investment, lower operating expenses, and lower environmental footprint.  It also offers the flexibility to produce larger numbers of smaller batches, with faster turnaround times compared to traditional stainless steel.

Cell densities are predicted to continue to rise, as is the need to produce greater quantities of proteins, all in an environment of increasing regulatory requirements.  If you decide to opt for single-use, it’s important to select the bioreactor that meets not just your current needs but also is able to support the demands of future processes.

5 key considerations when selecting a single-use bioreactor platform

  1. Process performance
    When making your assessment, one of the key considerations should be process performance. You should look for single-use technology that is equal to or better than traditional stainless steel; in terms of consistency, reliability, reproducibility, robustness, and, most importantly, flexibility.Contract development and manufacturing organization (CDMO) Fujifilm Diosynth needed a single-use platform that outperformed stainless steel across all these parameters. In addition, the single-use bioreactor itself needed to have optimal mixing capabilities, optimal mass transfer, and flexible sparging options.Fujifilm Diosynth needed to accommodate the demands of its proprietary Apollo expression platform and Saturn mAb platform, as well as a significant number of differing client platforms. Adoption of GE Healthcare’s BioProcess Xcellerex bioreactor platform allowed them the flexibility to meet all of the needs of such varied processes. Of particular note was the novel design that allows a 5:1 turndown for a wide range of output volumes.
  2. Control system and automation
    The choice of the automation and control systems are critical to the success of your project. Pairing the right control systems with sophisticated automation can deliver clear benefits. These range from remote control and remote monitoring, frequent sampling at predefined time intervals, and enhanced traceability of the manufacturing process, through to advantages of standardization across a facility. Automation also reduces the amount of human interaction with the process and can limit the chance for human error.
    Implementation of the right control systems leads to an overall improved level of quality assurance and compliance of the operating process, as well as increasing efficiency and reproducibility, which is especially important for cGMP manufacturing.
  3. Ease of implementation and qualification
    One of the key advantages of single-use is that the bag is the reactor, and therefore you can take the “family” approach. That means if you already have single-use technologies in place, previous qualification data can be leveraged for new bioreactors when the same type of bag is used, in terms of materials and design. This can dramatically simplify and speed up the qualification process.Fujifilm Diosynth already had a fully qualified and operational Xcellerex XDR-2000 at their Research Triangle Park site in North Carolina, USA, that they were happy with, so it made sense to duplicate this capacity at their Billingham manufacturing site in the UK.Installing the same equipment enabled three months to be taken off the installation time.
    In addition, the experience Fujifilm Diosynth had in North Carolina helped in the technology transfer and qualification stages of the single-use facilities at the Billingham site. This family approach also means that the amount of work to validate additional capacity in the future will also be reduced.
  4. Flexible Design – Choose a design that allows you to scale down
    When manufacturing biologics, it is important to have a bioreactor, or bioreactors, in place that allow volume flexibility. Biologics are high value products so you want to be able to manufacture only what is needed and minimize waste. You need to understand not only the maximum capacity of a run, but also the minimum operating volume before deciding on your bioreactor.The turndown ratio of a bioreactor is the difference between maximum operating volume and the minimum operating volume. Having a larger turndown factor has a number of benefits, for example, the size of the inoculum train can be reduced, because the inoculum is much smaller for the starting volume and the production reactor. That reduces the number of vessels that you need to buy, the size of facility you need to build, and the number of bags consumed per batch. It also reduces the overall operating and capital cost expenditures for the facility.The innovative design of the GE Healthcare Xcellerex-XDR bioreactor allows for up to a 5:1 volume turndown. This gives biomanufacturers like Fujifilm Diosynth a large dynamic range of volumes, allowing their processes to be run in a vessel that is specific for output needs and beneficial in minimizing waste.
  5. Flexible design – choose a design that is future proof
    Bioreactors can be specifically designed to readily support production scales changes.  For single-use, if the whole range has a common overlapping design space, then the output from a 50L, 100L, 500L, 1000L, or 2000L bioreactor will be the same, as long as the control parameters are kept within the recommended ranges.This not only provides a whole range to pick and choose from, but means bioreactors can be “bolted on” anywhere along the workflow to suit needs.  And, it simplifies the validation process.At their North Carolina site, Fujifilm Diosynth had a range of bioreactors up to 1000L from GE Healthcare’s BioProcess Xcellerex platform and added an additional 2000L bioreactor in 2014.  They decided to mirror this approach at their Billingham site.  Where Xcellerex bioreactors up to 1000L were initially installed and then later, in 2015, a 2000L bioreactor was added.This future-proofing concept was factored with the additional facility design.  By taking a phased approach, Fujifilm Diosynth were able to start meeting customers’ needs and then add additional capacity as demand increased.

    By adding duplicate single-use capacity, Fujifilm Diosynth had the ability to build on the experience they had from North Carolina and also had the flexibility to move customers’ “projects” from one site to another as capacity became available.  This gives them the  ability to efficiently serve customers through the drug development lifecycle.

Closing remark

Whatever technology platform you select, it should have the performance, reliability, flexibility, and robustness to meet the demands of your processes.  Beyond process performance, it is important to consider how control systems and automation come into play, how easy it is implement the platform, and if the design is flexible enough to support varying production volumes today and in the future.

Contact FUJIFILM Diosynth Biotechnologies

FUJIFILM Diosynth Biotechnologies – contact us
College Station, Texas
100 Discovery Drive
College Station, TX 77845
Main: +1 979 431 3500

RTP, North Carolina
101 J Morris Commons Lane
Morrisville, NC 27560
Main: +1 919 337 4400

Billingham, United Kingdom
Belasis Avenue
TS23 1LH
United Kingdom
Main: +44 1642 363511

Contact GE Healthcare

GE Healthcare – contact us

Marlborough, Massachusetts
100 Results Way
Marlborough, MA 01752
Main: + 1 800 526 3593

Uppsala, Sweden
Björkgatan 30
SE-751 25 Uppsala
Main: +46 18 612 0000

Fujifilm Diosynth is a trademark of Fujifilm Diosynth Biotechnologies U.S.A., Inc.
GE, the GE Monogram, BioProcess, and Xcellerex are trademarks of General Electric Company.
All other third-party trademarks are the property of their respective owners.
© 2017 General Electric Company.
All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.
GE Healthcare Bio-Sciences Corp., 100 Results Way, Marlborough, MA 01752, USA
For local office contact information, visit gelifesciences.com/contact